Автор: Насанова Альфия Салихьяновна
Должность: учитель математики
Учебное заведение: МБОУ СОШ №3
Населённый пункт: город Сургут ХМАО-Югра
Наименование материала: Методическая разработка
Тема: Урок-КВН "Дробно-рациональные уравнения"
Раздел: среднее образование
УРОК – КВН
«Дробные рациональные уравнения»
8 класс
Учитель: Насанова Альфия Салихьяновна
2019 – 2020 учебный год
Тип урока: урок обобщения и систематизации знаний с дидактической игрой
«КВН».
Организационные формы общения: групповая, индивидуальная.
План урока:
I. Мотивационная беседа с последующей постановкой цели.
II. Сообщение правил игры.
III. Игровые действия, в процессе которых раскрывается познавательное
содержание; происходит воспроизведение и коррекция знаний; проводится
диагностика усвоения системы знаний и умений и её применение для выполнения
практических заданий стандарта с переходом на более высокий уровень.
IV. Итог игры, подведение итогов урока.
V. Творческое домашнее задание.
Ход урока:
I. Мотивационная беседа с учащимися. В данной беседе сообщается тема урока
и его цели. Отмечается значение данной темы.
II. Сообщение правил урока. Класс заранее разделён на 2 команды, которые
выбирают капитана, название, эмблему, девиз. Командам объясняется правило
игры, которое состоит из нескольких этапов. Каждый этап оценивается
определённым количеством баллов, выигрывает та команды, которая набирает
большее количество баллов.
III. Игровые действия.
1.
Представление жюри
(жюри – учащиеся старших классов).
2.
Приветствие команд.
1)
Приветствие команды
«Вундеркинд»
Капитан: Команда «Вундеркинд»
Живущая под девизом:
«Если мы едины, то непобедимы!»
Сразиться с командой «Угадай-ка!» готова?
Команда: Готова!
Обращение к соперникам:
«Друзья, мы относимся к вам с уважением,
Поэтому вносим мы все предложения:
Давайте же драться по-рыцарски честно,
А дружбе уступим мы первое место!»
Обращение к жюри:
«Вы, жюри, нас не журите,
Больше баллов присудите.
Тогда будем мы стараться,
И с соперником сражаться!»
2) Приветствие команды «Угадай-ка!»
Капитан: Команда «Вундеркинд»
Живущая под девизом:
«Один за всех, и все – за одного!»
Сразиться с командой «Вундеркинд» готова?
Команда: Готова!
Обращение к соперникам:
«Ну что там хвастать,
Скажем скромно –
Соперник будет посрамлен!»
Обращение к жюри:
«О, жюри, жюри
Очень просим вас,
Не судите строго нас!».
3.
Проверка домашнего задания.
1 команда:№619
Один из лыжников прошел расстояние в 20 км на 20 мин быстрее, чем другой.
Найдите скорость каждого лыжника, зная, что один из них двигался со скоростью,
на 2 км/ч большей, чем другой.
Решение:
Х км/ч – скорость одного лыжника.
(х + 2)км/ч – скорость другого лыжника.
ч. – время движения одного лыжника.
ч. – время движения другого лыжника.
Зная, что один лыжник прошел 20км на 20 мин быстрее другого, т.е.
на (
-
)ч., составим уравнение:
-
=
-
=
20*3(х + 2) – 20*3х = 3х(х + 2)
60х + 120 – 60х = 3х
+ 6х
3х
+ 6х – 120 = 0
х
+ 2х – 60 = 0
х
= -12 – не удовлетворяет условию задачи
х
= 10.
Значит, 10км/ч – скорость одного лыжника.
10 + 2 = 12км/ч – скорость другого лыжника.
Ответ: 10 км/ч и 12 км/ч.
2 команда: №627
Турист проплыл на лодке против течения реки 6 км и по озеру 15км, затратив на
путь по озеру на 1 ч больше, чем путь по реке. Зная, что скорость течения реки
равна 2 км/ч, найдите скорость лодки при движении по озеру.
Решение:
Х км/ч – собственная скорость лодки(скорость лодки по озеру).
(х – 2) км/ч – скорость лодки против течения.
ч. – время движения по реке.
ч. – время движения по озеру.
Зная, что на время движения по озеру на 1 ч. больше, т.е. на (
-
)ч.,
составим уравнение:
-
= 1
15(х – 2) – 6х = х(х – 2)
15х – 30 – 6х = х
- 2х
х
- 11х + 30 = 0
х
= 5, х
= 6.
Значит, 5 км/ч – скорость лодки по озеру или 6км\ч - скорость лодки по озеру.
Ответ: 5км/ч или 6км/ч.
4.
Конкурс знатоков русского языка.
«Исправьте допущенные ошибки:
Дескреминат
Уровнение
Преведеное
Рацианальное
Тиорема
Франсуа Виетта
Не полное квадратное уровнение
Праизвидение
Каэфициент
Вырожение.»
5.
Конкурс капитанов.
Капитаны садятся за отдельные столы и выполняют задание:
Составить уравнение по условию задачи:
Капитану 1 команды.
Туристы прошли три перехода в 12,5 км, 18 км и 14 км, причем скорость на
первом переходе была на 1 км/ч меньше скорости на втором переходе и на столько
же больше скорости на третьем. На третий переход они затратили на 30 мин
больше, чем на второй. Сколько времени заняли все переходы?
.
Капитану 2 команды.
Автомобиль прошел с некоторой постоянной скоростью путь от А до В длиной
240 км. Возвращаясь обратно, он прошел половину пути с той же скоростью, а
затем увеличил её на 10 км/ч. В результате на обратный путь было затрачено на
ч меньше, чем на путь от А до В. С какой скоростью шел автомобиль от А до В?
.
В это время команды решают задачи:
1. Грело 7 свечей. Из них четыре потушили. Сколько осталось свечей? (4)
2. Самолёт покрывает расстояние от п.А до п.В за 1 час 20 минут. Однако
обратный полёт он совершает за 80 минут. Как вы это объясните?
3. Мальчик ехал на велосипеде в город. Ему встретилась машина, в которой
сидело 6 колхозников. Каждый вёз по одной курице и по паре валенок. Сколько
живых существ ехало в город? (1 – мальчик)
4. Полтора судака стоят полтора рубля. Сколько стоят десять судаков? (10 р.)
5. В корзине три яблока. Как поделить их между тремя мальчиками, чтобы одно
яблоко осталось в корзине? (Отдать вместе с корзиной)
6. Сколько концов у пяти палок? (10) А у пяти с половиной? (12)
7. Круглый, мягкий с хвостом как у мыши, а за хвост не поднимешь? (Клубок)
8. Сколько горошин может войти в обыкновенный стакан? (Нисколько)
9. Когда человек бывает в комнате без головы? (Когда выглядывает из окна)
10. Чем кончается как день, так и ночь? (Мягким знаком)
11. Какие часы показывают верное время только два раза в сутки? (Часы, которые
остановились).
6.
Игра «Кто быстрее».
На доске на небольших стендах с уголками заранее на отдельных листах
подготовлены задания командам. Члены команды по очереди выходят к доске и
решают те задания, которые им достались. Если ученик допускает ошибку, то
следующим за ним должен её исправить. Оценивается быстрота и правильность.
Задания 1 команде: Задания 2 команде:
а)
, а)
,
б)
, б)
,
в)
, в)
,
г)
, г)
,
д)
, д)
,
е)
, е)
,
ж)
, ж)
1
5
46
18
х
х
,
з)
. з)
.
4.
Конкурс художников.
а) Нарисуйте фигуры, не отрывая карандаша от бумаги и не проводя дважды по
одной и той же линии.
б) Отмерьте на глаз один метр ленты.
IV
. Подведение итогов, награждение команд.
V
. Задание на дом:
составить математический кроссворд
Дескреминат Дескреминат
Уровнение Уровнение
Преведеное Преведеное
Рацианальное Рацианальное
Тиорема Тиорема
Франсуа Виета Франсуа Виетта
Не полное квадратное уровнение Не полное квадратное уровнение
Праизвидение Праизвидение
Каэфициент Каэфициент
Вырожение Вырожение
Капитану 1 команды.
Туристы прошли три перехода в 12,5 км, 18 км и 14 км, причем скорость на
первом переходе была на 1 км/ч меньше скорости на втором переходе и на столько
же больше скорости на третьем. На третий переход они затратили на 30 мин
больше, чем на второй. Сколько времени заняли все переходы?
.
Капитану 2 команды.
Автомобиль прошел с некоторой постоянной скоростью путь от А до В длиной
240 км. Возвращаясь обратно, он прошел половину пути с той же скоростью, а
затем увеличил её на 10 км/ч. В результате на обратный путь было затрачено на
ч меньше, чем на путь от А до В. С какой скоростью шел автомобиль от А до В?
Задания 1 команде:
а)
________________________________________________
б)
_______________________________________________
в)
г)
д)
е)
ж)
_______________________________________________
з)
Задания 2 команде:
а)
б)
_______________________________________________________
в)
г)
_________________________________________________
д)
_________________________________________________
е)
ж)
1
5
46
18
х
х
з)