Автор: Яношева Елена Алексеевна Должность: учитель математики Учебное заведение: Михайловский филиал МБОУ "Щекинская СОШ" Населённый пункт: с.Михайловка Рыльский р-н Курская обл. Наименование материала: методическая разработка Тема: РАБОЧАЯ ПРОГРАММА учебного предмета "Алгебра" Раздел: среднее образование
Муниципальное бюджетное общеобразовательное учреждение
«Щекинская средняя общеобразовательная школа»
Михайловский филиал
РАССМОТРЕНА
на заседании школьного
методического
объединения
от «01» сентября 2016 г.
№ 1
____________И.В.Пальчиков
а
РАССМОТРЕНА
на заседании
педагогического совета
от «01»сентября 2016 г.
№ 2
УТВЕРЖДЕНА
приказом от 01.09.2016 г.№ 1-
230
Директор МБОУ "Щекинская
СОШ»
__________ Е.П.Кузичкина
РАБОЧАЯ ПРОГРАММА
учебного предмета «Алгебра»
Уровень образования: основное общее образование
(7-9 классы)
Учитель: Яношева Елена Алексеевна
I квалификационной категории
2016 год
Содержание.
1. Пояснительная записка
3
2.
Требования к уровню подготовки обучающихся
4
3.
Содержание учебного предмета, курса
11
4.
Тематическое планирование с указанием количества
часов, отводимых на освоение каждой темы
12
Пояснительная записка
Рабочая программа по алгебре для обучающихся 7-9 класса составлена в
соответствии с нормативными документами:
Закона об образовании
Федерального компонента государственного стандарта (начального общего образования,
основного
общего
образования,
среднего
общего
образования)
по
математике,
утвержденного приказом Минобразования России от 05.03.2004г № 1089.
Примерной
программы
основного
общего
образования
по
математике.
Математика.
Содержание
образования.
Сборник
нормативно-правовых
документов
и
методических
материалов(2004 г.)
Программы для общеобразовательных школ, гимназий, лицеев: Математика, 5 – 11 кл. /
Сост. Г.М. Кузнецова, Н.Г. Миндюк. / 4-е изд., стереотип. М.: Дрофа, 2012 – 320 с.
Авторской программы общеобразовательных учреждений по алгебре 7–9 классы к учебному
комплекту
для
7-9
классов
(авторы
Ю.Н.
Макарычев,
Н.Г.
Миндюк,
К.Н.
Нешков,С.Б.СувороваЮ.Н.,–М:«Просвещение», 2014);
Программы по алгебре 7-9 класс Ю.Н. Макарычева, Н.Г. Миндюк и др. из сборника
«Программы общеобразовательных учреждений. Алгебра 7 –9 классы» составитель: Т.А.
Бурмистрова –М.: «Просвещение» 2010 г.
ООП МБОУ «Щекинская СОШ»
Списка учебников ОУ, соответствующему Федеральному перечню учебников,
утвержденных, рекомендованных (допущенных) к использованию в образовательном
процессе в образовательных учреждениях на 2016-2017 уч. год, реализующих программы
общего образования
Данный учебный курс занимает важное место в системе общего образования
школьников, потому что алгебра нацелена на формирование математического аппарата для
решения задач из математики, смежных предметов, окружающей реальности.
Особенность построения курса состоит в том, что продолжаются и получают развитие
содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы
комбинаторики, теории вероятностей, статистики и логики». Алгебра нацелена на
формирование математического аппарата для решения задач из математики, смежных
предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как
языка для построения математических моделей, процессов и явлений реального мира. В
задачи изучения алгебры входят также развитие алгоритмического мышления,
необходимого, в частности, для освоения курса информатики, овладение
навыками дедуктивных рассуждений.
Цель курса - овладение системой математических знаний и умений (планирования и
осуществления алгоритмической деятельности, выполнения и конструирование новых
алгоритмов; решение разнообразных задач; исследовательской деятельности, постановки и
формулирования новых задач.); интеллектуальное развитие, (формирование качеств
личности, необходимые человеку для полноценной жизни: ясность и точность
мысли, критичность мышления, интуиции, логического мышления); формирование
представлений об идеях и методах математики как универсального языка науки и техники;
воспитание культуры личности, отношение к математике как к части
общечеловеческой культуры.
Задачи курса – приобретение математических знаний и умений;
овладение обобщенными способами мыслительной, творческой деятельности;
освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной,
личностного саморазвития, ценностно-ориентационной.
На изучение математики на ступени основного общего образования отводится не менее
875 ч из расчета 5 ч в неделю с V по IX класс. Учебный предмет «Алгебра» относится к
образовательной области Математика». Данный предмет изучается с 7 по 9 класс.
Обязательная часть учебного плана предусматривает обязательное изучение математики в 7
классе в объёме 175 часов в год из расчета 5 ч в неделю, при этом разделение часов на
изучение алгебры и геометрии следующее: 5 часов в неделю алгебры в I четверть, 3 часа в
неделю во II-IV четверти, итого 123 часа; 2 часа в неделю геометрии во II-IV четверти, итого
52 часа- (35 учебных недель). На изучение учебного курса алгебры в 8 классе отводится 3
часа в неделю. Курс рассчитан на 105 ч - (35 учебных недель). На изучение учебного курса
алгебры в 9 классе отводится 3 часа в неделю. Курс рассчитан на 102 ч - (34 учебных
недели).
В содержание примерной программы и программы к завершённой линии учебников по
алгебре для 7-9 класса дополнения и изменения не внесены.
2. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ
В результате изучения курса алгебры 7 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их
применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости;
приводить примеры такого описания;
как
потребности
практики
привели
математическую
науку
к
необходимости
расширения понятия числа;
вероятностный
характер
многих
закономерностей
окружающего
мира;
примеры
статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия;
примеры
геометрических объектов и утверждений о них, важных для практики;
смысл
идеализации,
позволяющей
решать
задачи
реальной
действительности
математическими методами, примеры ошибок, возникающих при идеализации;
уметь
составлять буквенные выражения и формулы по условиям задач; осуществлять в
выражениях
и
формулах
числовые
подстановки
и
выполнять
соответствующие
вычисления, осуществлять подстановку одного выражения в другое; выражать из
формул одну переменную через остальные;
выполнять
основные
действия
со
степенями
с
натуральными
показателями,
с
многочленами;
выполнять
разложение
многочленов
на
множители;
выполнять
тождественные преобразования рациональных выражений;
решать
линейные
уравнения
решать
линейные
решать
текстовые
задачи
алгебраическим методом, интерпретировать полученный результат, проводить отбор
решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять
координаты
точки
плоскости,
строить
точки
с
заданными
координатами;
находить
значения
функции,
заданной
формулой,
таблицей,
графиком
по
ее
аргументу; находить значение аргумента по значению функции, заданной графиком
или таблицей;
применять
графические
представления
при
решении
уравнений,
систем,
неравенств;
описывать свойства изученных функций (у=кх,
где к
¿
0, у=кх+b,
у=х
2
, у=х
3
),
строить их графики.
использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
выполнения
расчетов
по
формулам,
составления
формул,
выражающих
зависимости
между
реальными
величинами;
нахождения
нужной
формулы
в
справочных материалах;
моделирования практических ситуаций и исследовании построенных моделей с
использованием аппарата алгебры;
описания
зависимостей
между
физическими
величинами
соответствующими
формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
В результате изучения курса алгебры 8 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их
применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные
зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости
расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры
статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры
геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности
математическими методами, примеры ошибок, возникающих при идеализации;
АРИФМЕТИКА
уметь:
выполнять устно арифметические действия: сложение и вычитание двузначных
чисел и десятичных дробей с двумя знаками, умножение однозначных чисел,
арифметические операции с обыкновенными дробями с однозначным
знаменателем и числителем;
переходить от одной формы записи чисел к другой, представлять десятичную
дробь в виде обыкновенной и в простейших случаях обыкновенную в виде
десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать
большие и малые числа с использованием целых степеней десятки;
выполнять арифметические действия с рациональными числами, сравнивать
рациональные и действительные числа; находить в несложных случаях значения
степеней с целыми показателями и корней; находить значения числовых
выражений;
округлять целые числа и десятичные дроби, находить приближения чисел с
недостатком и с избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема;
выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи, связанные с отношением и с
пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной
жизни для:
решения несложных практических расчетных задач, в том числе c использованием при
необходимости справочных материалов, калькулятора, компьютера;
устной прикидки и оценки результата вычислений; проверки результата
вычисления с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с
реальными свойствами рассматриваемых процессов и явлений;
АЛГЕБРА
уметь
составлять буквенные выражения и формулы по условиям задач; осуществлять
в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления,
осуществлять подстановку одного выражения в другое; выражать из формул одну
переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с
многочленами и с алгебраическими дробями; выполнять разложение
многочленов на множители; выполнять тождественные преобразования
рациональных выражений;
применять свойства арифметических квадратных корней для вычисления
значений и преобразований числовых выражений, содержащих квадратные
корни;
решать линейные, квадратные уравнения и рациональные уравнения,
сводящиеся к ним, системы двух линейных уравнений и несложные
нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать
полученный результат, проводить отбор решений, исходя из формулировки
задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными
координатами; изображать множество решений линейного неравенства;
распознавать арифметические и геометрические прогрессии; решать задачи с
применением формулы общего члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по ее
аргументу; находить значение аргумента по значению функции, заданной
графиком или таблицей;
определять свойства функции по ее графику; применять графические
представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций (у=кх, где к
0, у=кх+b, у=х2, у=х3, у=хк,
у=х), строить их графики;
использовать приобретенные знания и умения в практической деятельности и
повседневной жизни
для:
выполнения расчетов по формулам, составления формул, выражающих
зависимости между реальными величинами; нахождения нужной формулы в
справочных материалах;
моделирования практических ситуаций и исследовании построенных моделей с
использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими
формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ
ВЕРОЯТНОСТЕЙ
уметь
проводить несложные доказательства, получать простейшие следствия из
известных или ранее полученных утверждений, оценивать логическую
правильность рассуждений, использовать примеры для иллюстрации и
контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных
вариантов, вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые
статистические данные;
использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
выстраивания аргументации при доказательстве (в форме монолога и диалога);
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессиональной деятельности
с использованием действий с числами, процентов, длин, площадей, объемов, времени,
скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
В результате изучения курса алгебры 9 класса обучающиеся должны:
знать/понимать
• существо понятия математического доказательства; приводить примеры доказательств;
• существо понятия алгоритма; приводить примеры алгоритмов;
• как используются математические формулы, уравнения и неравенства; примеры их
применения для решения математических и практических задач;
• как математически определенные функции могут описывать реальные зависимости;
приводить примеры такого описания;
• как потребности практики привели математическую науку к необходимости расширения
понятия числа;
• вероятностный характер многих закономерностей окружающего мира; примеры
статистических закономерностей и выводов;
• смысл идеализации, позволяющей решать задачи реальной действительности
математическими методами, примеры ошибок, возникающих при идеализации.
Арифметика
уметь
• выполнять устно арифметические действия: сложение и вычитание двузначных
чисел и десятичных дробей с двумя знаками, умножение однозначных чисел,
арифметические операции с обыкновенными дробями с однозначным знаменателем
и числителем;
• переходить от одной формы записи чисел к другой, представлять десятичную дробь
в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной,
проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые
числа с использованием целых степеней десятки;
• выполнять арифметические действия с рациональными числами, сравнивать
рациональные и действительные числа; находить в несложных случаях значения
степеней с целыми показателями и корней; находить значения числовых выражений;
• округлять целые числа и десятичные дроби, находить приближения чисел с
недостатком и с избытком, выполнять оценку числовых выражений;
• пользоваться основными единицами длины, массы, времени, скорости, площади,
объема; выражать более крупные единицы через более мелкие и наоборот;
• решать текстовые задачи, включая задачи, связанные с отношением и с
пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• решения несложных практических расчетных задач, в том числе c использованием
при необходимости справочных материалов, калькулятора, компьютера;
• устной прикидки и оценки результата вычислений; проверки результата вычисления,
с использованием различных приемов;
• интерпретации результатов решения задач с учетом ограничений, связанных с
реальными свойствами рассматриваемых процессов и явлений.
Алгебра
уметь
• составлять буквенные выражения и формулы по условиям задач; осуществлять в
выражениях и формулах числовые подстановки и выполнять соответствующие
вычисления, осуществлять подстановку одного выражения в другое; выражать из
формул одну переменную через остальные;
• выполнять основные действия со степенями с целыми показателями, с
многочленами и с алгебраическими дробями; выполнять разложение многочленов на
множители; выполнять тождественные преобразования рациональных выражений;
• применять свойства арифметических квадратных корней для вычисления значений и
преобразований числовых выражений, содержащих квадратные корни;
• решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к
ним, системы двух линейных уравнений и несложные нелинейные системы;
• решать линейные и квадратные неравенства с одной переменной и их системы,
• решать текстовые задачи алгебраическим методом, интерпретировать полученный
результат, проводить отбор решений, исходя из формулировки задачи;
• изображать числа точками на координатной прямой;
• определять координаты точки плоскости, строить точки с заданными координатами;
изображать множество решений линейного неравенства;
• распознавать арифметические и геометрические прогрессии; решать задачи с
применением формулы общего члена и суммы нескольких первых членов;
• находить значения функции, заданной формулой, таблицей, графиком по ее
аргументу; находить значение аргумента по значению функции, заданной графиком
или таблицей;
• определять свойства функции по ее графику; применять графические представления
при решении уравнений, систем, неравенств;
• описывать свойства изученных функций, строить их графики.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• выполнения расчетов по формулам, для составления формул, выражающих
зависимости между реальными величинами; для нахождения нужной формулы в
справочных материалах;
• моделирования практических ситуаций и исследовании построенных моделей с
использованием аппарата алгебры;
• описания зависимостей между физическими величинами соответствующими
формулами, при исследовании несложных практических ситуаций;
• интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
• проводить несложные доказательства, получать простейшие следствия из известных
или ранее полученных утверждений, оценивать логическую правильность
рассуждений, использовать примеры для иллюстрации и контрпримеры для
опровержения утверждений;
• извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики;
• решать комбинаторные задачи путем систематического перебора возможных
вариантов и с использованием правила умножения;
• вычислять средние значения результатов измерений;
• находить частоту события, используя собственные наблюдения и готовые
статистические данные;
• находить вероятности случайных событий в простейших случаях.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• выстраивания аргументации при доказательстве и в диалоге;
• распознавания логически некорректных рассуждений;
• записи математических утверждений, доказательств;
• анализа реальных числовых данных, представленных в виде диаграмм, графиков,
таблиц;
• решения практических задач в повседневной и профессиональной деятельности с
использованием действий с числами, процентов, длин, площадей, объемов, времени,
скорости;
• решения учебных и практических задач, требующих систематического перебора
вариантов;
• сравнения шансов наступления случайных событий, для оценки вероятности
случайного события в практических ситуациях, сопоставления модели с реальной
ситуацией;
• понимания статистических утверждений.
3. Содержание учебного предмета
7 класс
1.Выражения, тождества, уравнения. (24 ч.)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение,
корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач
методом составления уравнений. Статистические характеристики.
2. Функции. (14 ч.)
Функция, область определения функции. Вычисление значений функции по формуле.
График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
3. Степень с натуральным показателем. (15 ч.)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х
2
, у=х
3
и их
графики.
4. Многочлены. (20 ч.)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на
множители.
5.Формулы сокращенного умножения. (20 ч.)
Формулы (а - b )(а + b ) = а
2
- b
2
, (а ± b)
2
= а
2
± 2а b + b
2
, (а ± b)
3
= а
3
± За
2
b + За b
2
± b
3
, (а ± b)
(а
2
∓
а b + b
2
) = а
3
± b
3
. Применение формул сокращенного умножения в преобразованиях
выражений.
6.Системы линейных уравнений. (17 ч.)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его
геометрическая интерпретация. Решение текстовых задач методом составления систем
уравнений.
7. Повторение.(13 ч.)
8 класс
1.Вводное повторение (3 ч.)
Рациональные дроби. (23 ч.)
Рациональная дробь. Основное свойство дроби, сокращение дробей.
Тождественные преобразования рациональных выражений. Функция у = k/x и её график.
2.Квадратные корни. (19 ч.)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный
корень. Понятие о нахождении приближенного значения квадратного корня. Свойства
квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у=
, ее свойства и график.
3. Квадратные уравнения. (22 ч.)
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных
уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим
рациональным уравнениям.
4. Неравенства. (20 ч.)
Числовые неравенства и их свойства. Почленное сложение и умножение числовых
неравенств. Погрешность и точность приближения. Линейные неравенства с одной
переменной и их системы.
5.Степень с целым показателем. Элементы статистики. (11 ч.)
Степень с целым показателем и ее свойства. Стандартный вид числа.
Начальные сведения об организации статистических исследований.
6. Повторение. (11 ч.)
9 класс
1.Вводное повторение (3 ч.)
2. Свойства функций. Квадратичная функция . (22 ч.)
Функция. Свойства функций.Квадратный трехчлен. Разложение квадратного трехчлена на
множители. Функция у = х2 + bx+ c, её свойства и график. Степенная функция.
3. Уравнения и неравенства с одной переменной. (14 ч.)
Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной
переменной. Метод интервалов.
4. Уравнения и неравенства с двумя переменными . (17 ч.)
Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение
задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их
системы.
5.Прогрессии. (15 ч.)
Арифметическая и геометрическая прогрессии. Формула n-го члена и суммы первых n
членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
6. Элементы комбинаторики и теории вероятности. (13 ч.)
Комбинаторное правило умножения. Перестановки, размещения,
сочетания. Относительная частота и вероятность случайного события.
7. Повторение. (18 ч.)
4. Тематическое планирование с указанием количества часов, отводимых на освоение
каждой темы.
7 класс
№
Тема раздела, модуля, курса
Колич
ество
часов
(всего)
Из них (количество часов)
Проектная
деятельность
практич
еские
контроль
ные
экскур
сии
1
Вводное повторение.
3
1
2
Выражения, тождества,
уравнения.
24
2
3
Функции
14
1
4
С т е п е н ь
с
н а т у р а л ь н ы м
показателем
15
1
5
Многочлены
20
2
6
Ф о р м ул ы
с о к р а щ е н н о г о
умножения
20
2
7
Системы линейных уравнений
17
1
8
Итоговое
повторение
курса
алгебры 7 класса
10
1
ИТОГО:
123
8 класс
№
Тема раздела, модуля, курса
Колич
ество
часов
(всего)
Из них (количество часов)
Проектная
деятельность
практич
еские
контроль
ные
экскур
сии
1
Вводное повторение.
3
1
2
Рациональные дроби
23
3
3
Квадратные корни
19
2
4
Квадратные уравнения
22
2
5
Неравенства
20
2
6
Степень с целым показателем.
Элементы статистики.
11
1
7
Итоговое повторение
7
1
ИТОГО:
105
9 класс
№
Тема раздела, модуля, курса
Колич
ество
часов
(всего)
Из них (количество часов)
Проектная
деятельность
(направление,
наименование
проекта)
практич
еские
контроль
ные
экскур
сии
1
Вводное повторение.
3
1
2
Квадратичная функция
22
2
3
Уравнения и неравенства с
одной переменной
14
1
4
Уравнения и неравенства с
двумя переменными
17
1
5
Прогрессии
15
2
6
Элементы комбинаторики и
теории вероятностей
13
1
7
Повторение
18
1
ИТОГО:
102